20 research outputs found

    Who is the director of this movie? Automatic style recognition based on shot features

    Get PDF
    We show how low-level formal features, such as shot duration, meant as length of camera takes, and shot scale, i.e. the distance between the camera and the subject, are distinctive of a director's style in art movies. So far such features were thought of not having enough varieties to become distinctive of an author. However our investigation on the full filmographies of six different authors (Scorsese, Godard, Tarr, Fellini, Antonioni, and Bergman) for a total number of 120 movies analysed second by second, confirms that these shot-related features do not appear as random patterns in movies from the same director. For feature extraction we adopt methods based on both conventional and deep learning techniques. Our findings suggest that feature sequential patterns, i.e. how features evolve in time, are at least as important as the related feature distributions. To the best of our knowledge this is the first study dealing with automatic attribution of movie authorship, which opens up interesting lines of cross-disciplinary research on the impact of style on the aesthetic and emotional effects on the viewers

    FIGARO, Hair Detection and Segmentation in the Wild

    Get PDF
    Hair is one of the elements that mostly characterize people appearance. Being able to detect hair in images can be useful in many applications, such as face recognition, gender classification, and video surveillance. To this purpose we propose a novel multi-class image database for hair detection in the wild, called Figaro. We tackle the problem of hair detection without relying on a-priori information related to head shape and location. Without using any human-body part classifier, we first classify image patches into hair vs. non-hair by relying on Histogram of Gradients (HOG) and Linear Ternary Pattern (LTP) texture features in a random forest scheme. Then we obtain results at pixel level by refining classified patches by a graph-based multiple segmentation method. Achieved segmentation accuracy (85%) is comparable to state-of-the-art on less challenging databases

    Fighting the scanner effect in brain MRI segmentation with a progressive level-of-detail network trained on multi-site data

    Full text link
    Many clinical and research studies of the human brain require an accurate structural MRI segmentation. While traditional atlas-based methods can be applied to volumes from any acquisition site, recent deep learning algorithms ensure very high accuracy only when tested on data from the same sites exploited in training (i.e., internal data). The performance degradation experienced on external data (i.e., unseen volumes from unseen sites) is due to the inter-site variabilities in intensity distributions induced by different MR scanner models, acquisition parameters, and unique artefacts. To mitigate this site-dependency, often referred to as the scanner effect, we propose LOD-Brain, a 3D convolutional neural network with progressive levels-of-detail (LOD) able to segment brain data from any site. Coarser network levels are responsible to learn a robust anatomical prior useful for identifying brain structures and their locations, while finer levels refine the model to handle site-specific intensity distributions and anatomical variations. We ensure robustness across sites by training the model on an unprecedented rich dataset aggregating data from open repositories: almost 27,000 T1w volumes from around 160 acquisition sites, at 1.5 - 3T, from a population spanning from 8 to 90 years old. Extensive tests demonstrate that LOD-Brain produces state-of-the-art results, with no significant difference in performance between internal and external sites, and robust to challenging anatomical variations. Its portability opens the way for large scale application across different healthcare institutions, patient populations, and imaging technology manufacturers. Code, model, and demo are available at the project website

    CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI

    Get PDF
    Many functional and structural neuroimaging studies call for accurate morphometric segmentation of different brain structures starting from image intensity values of MRI scans. Current automatic (multi-) atlas-based segmentation strategies often lack accuracy on difficult-to-segment brain structures and, since these methods rely on atlas-to-scan alignment, they may take long processing times. Alternatively, recent methods deploying solutions based on Convolutional Neural Networks (CNNs) are enabling the direct analysis of out-of-the-scanner data. However, current CNN-based solutions partition the test volume into 2D or 3D patches, which are processed independently. This process entails a loss of global contextual information, thereby negatively impacting the segmentation accuracy. In this work, we design and test an optimised end-to-end CNN architecture that makes the exploitation of global spatial information computationally tractable, allowing to process a whole MRI volume at once. We adopt a weakly supervised learning strategy by exploiting a large dataset composed of 947 out-of-the-scanner (3 Tesla T1-weighted 1mm isotropic MP-RAGE 3D sequences) MR Images. The resulting model is able to produce accurate multi-structure segmentation results in only a few seconds. Different quantitative measures demonstrate an improved accuracy of our solution when compared to state-of-the-art techniques. Moreover, through a randomised survey involving expert neuroscientists, we show that subjective judgements favour our solution with respect to widely adopted atlas-based software

    Fighting the scanner effect in brain MRI segmentation with a progressive level-of-detail network trained on multi-site data

    Get PDF
    Many clinical and research studies of the human brain require accurate structural MRI segmentation. While traditional atlas-based methods can be applied to volumes from any acquisition site, recent deep learning algorithms ensure high accuracy only when tested on data from the same sites exploited in training (i.e., internal data). Performance degradation experienced on external data (i.e., unseen volumes from unseen sites) is due to the inter-site variability in intensity distributions, and to unique artefacts caused by different MR scanner models and acquisition parameters. To mitigate this site-dependency, often referred to as the scanner effect, we propose LOD-Brain, a 3D convolutional neural network with progressive levels-of-detail (LOD), able to segment brain data from any site. Coarser network levels are responsible for learning a robust anatomical prior helpful in identifying brain structures and their locations, while finer levels refine the model to handle site-specific intensity distributions and anatomical variations. We ensure robustness across sites by training the model on an unprecedentedly rich dataset aggregating data from open repositories: almost 27,000 T1w volumes from around 160 acquisition sites, at 1.5 - 3T, from a population spanning from 8 to 90 years old. Extensive tests demonstrate that LOD-Brain produces state-of-the-art results, with no significant difference in performance between internal and external sites, and robust to challenging anatomical variations. Its portability paves the way for large-scale applications across different healthcare institutions, patient populations, and imaging technology manufacturers. Code, model, and demo are available on the project website

    Transfer learning of deep neural network representations for fMRI decoding

    Get PDF
    Background: Deep neural networks have revolutionised machine learning, with unparalleled performance in object classification. However, in brain imaging (e.g., fMRI), the direct application of Convolutional Neural Networks (CNN) to decoding subject states or perception from imaging data seems impractical given the scarcity of available data. New method: In this work we propose a robust method to transfer information from deep learning (DL) features to brain fMRI data with the goal of decoding. By adopting Reduced Rank Regression with Ridge Regularisation we establish a multivariate link between imaging data and the fully connected layer (fc7) of a CNN. We exploit the reconstructed fc7 features by performing an object image classification task on two datasets: one of the largest fMRI databases, taken from different scanners from more than two hundred subjects watching different movie clips, and another with fMRI data taken while watching static images. Results: The fc7 features could be significantly reconstructed from the imaging data, and led to significant decoding performance. Comparison with existing methods: The decoding based on reconstructed fc7 outperformed the decoding based on imaging data alone. Conclusion: In this work we show how to improve fMRI-based decoding benefiting from the mapping between functional data and CNN features. The potential advantage of the proposed method is twofold: the extraction of stimuli representations by means of an automatic procedure (unsupervised) and the embedding of high-dimensional neuroimaging data onto a space designed for visual object discrimination, leading to a more manageable space from dimensionality point of view

    CEREBRUM-7T: Fast and Fully-volumetric Brain Segmentation of 7 Tesla MR Volumes

    Get PDF
    Ultra-high-field magnetic resonance imaging (MRI) enables sub-millimetre resolution imaging of the human brain, allowing the study of functional circuits of cortical layers at the meso-scale. An essential step in many functional and structural neuroimaging studies is segmentation, the operation of partitioning the MR images in anatomical structures. Despite recent efforts in brain imaging analysis, the literature lacks in accurate and fast methods for segmenting 7-tesla (7T) brain MRI. We here present CEREBRUM-7T, an optimised end-to-end convolutional neural network, which allows fully automatic segmentation of a whole 7T T1w MRI brain volume at once, without partitioning the volume, pre-processing, nor aligning it to an atlas. The trained model is able to produce accurate multi-structure segmentation masks on six different classes plus background in only a few seconds. The experimental part, a combination of objective numerical evaluations and subjective analysis, confirms that the proposed solution outperforms the training labels it was trained on and is suitable for neuroimaging studies, such as layer functional MRI studies. Taking advantage of a fine-tuning operation on a reduced set of volumes, we also show how it is possible to effectively apply CEREBRUM-7T to different sites data. Furthermore, we release the code, 7T data, and other materials, including the training labels and the Turing test

    Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator

    No full text
    An investigation is carried out to determine how air and water flow rates as well as the air inlet size (variable parameters) influence the size distribution of micro bubbles for a Venturi type bubble genera- tor. Size distribution is extracted from the videos captured during the experiments using two different post processing algorithms which all report similar trends. The significance of the size distribution of micro bubbles is discussed and the results of the experiments are reported. It is shown that Sauter mean diameter and statistical parameters of log-normal distribution are influenced by the variable parameters and can be expressed using theoretical model based on dimensionless numbers containing these param- eters. It is shown that such theoretical model reports influence of variable parameters on the investigated ones which is consistent with the population balance model as well as with the correlations previously reported in literature. Finally, the significance of correlation between variable parameters and statistical parameters of the distribution is discussed

    CEREBRUM-7T: fast and fully volumetric brain segmentation of 7 Tesla MR volumes

    No full text
    Ultra-high-field magnetic resonance imaging (MRI) enables sub-millimetre resolution imaging of the human brain, allowing the study of functional circuits of cortical layers at the meso-scale. An essential step in many functional and structural neuroimaging studies is segmentation, the operation of partitioning the MR images in anatomical structures. Despite recent efforts in brain imaging analysis, the literature lacks in accurate and fast methods for segmenting 7-tesla (7T) brain MRI. We here present CEREBRUM-7T, an optimised end-to-end convolutional neural network, which allows fully automatic segmentation of a whole 7T T1w MRI brain volume at once, without partitioning the volume, pre-processing, nor aligning it to an atlas. The trained model is able to produce accurate multi-structure segmentation masks on six different classes plus background in only a few seconds. The experimental part, a combination of objective numerical evaluations and subjective analysis, confirms that the proposed solution outperforms the training labels it was trained on and is suitable for neuroimaging studies, such as layer functional MRI studies. Taking advantage of a fine-tuning operation on a reduced set of volumes, we also show how it is possible to effectively apply CEREBRUM-7T to different sites data. Furthermore, we release the code, 7T data, and other materials, including the training labels and the Turing test
    corecore